Inhibition of bacterial U(VI) reduction by calcium.

نویسندگان

  • Scott C Brooks
  • James K Fredrickson
  • Sue L Carroll
  • David W Kennedy
  • John M Zachara
  • Andrew E Plymale
  • Shelly D Kelly
  • Kenneth M Kemner
  • Scott Fendorf
چکیده

The rapid kinetics of bacterial U(VI) reduction and low solubility of uraninite (UO2,cr) make this process an attractive option for removing uranium from groundwater. Nevertheless, conditions that may promote or inhibit U(VI) reduction are not well-defined. Recent descriptions of Ca-UO2-CO3 complexes indicate that these species may dominate the aqueous speciation of U(VI) in many environments. We monitored the bacterial reduction of U(VI) in bicarbonate-buffered solution in the presence and absence of Ca. XAFS measurements confirmed the presence of a Ca-U(VI)-C03 complex in the initial solutions containing calcium. Calcium, at millimolar concentrations (0.45-5 mM), caused a significant decrease in the rate and extent of bacterial U(VI) reduction. Both facultative (Shewanella putrefaciens strain CN32) and obligate (Desulfovibrio desulfuricans, Geobacter sulfurreducens) anaerobic bacteria were affected by the presence of calcium. Reduction of U(VI) ceased when the calculated system Eh reached -0.046 +/- 0.001 V, based on the Ca2UO2(CO3)3 --> UO2,cr couple. The results are consistent with the hypothesis that U is a less energetically favorable electron acceptor when the Ca-UO2-CO3 complexes are present. The results do not support Ca inhibition caused by direct interactions with the cells or with the electron donor as the reduction of fumarate or Tc(VII)O4- under identical conditions was unaffected by the presence of Ca.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of calcium on microbial reduction of solid phase uranium(VI).

The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis ...

متن کامل

The effects of uranium speciation on the rate of U(VI) reduction by Shewanella oneidensis MR-1

We measured the kinetics of U(VI) reduction by Shewanella oneidensisMR-1 under anaerobic conditions in the presence of variable concentrations of either EDTA or dissolved Ca. We measured both total dissolved U and U(VI) concentrations in solution as a function of time. In separate experiments, we also measured the extent of U(VI) adsorption onto S. oneidensis in order to quantify the thermodyna...

متن کامل

Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria.

We present a travel-time based reactive transport model to simulate an in-situ bioremediation experiment for demonstrating enhanced bioreduction of uranium(VI). The model considers aquatic equilibrium chemistry of uranium and other groundwater constituents, uranium sorption and precipitation, and the microbial reduction of nitrate, sulfate and U(VI). Kinetic sorption/desorption of U(VI) is char...

متن کامل

Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer

The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles ar...

متن کامل

The effect of calcium on aqueous uranium(VI) speciationand adsorption to ferrihydrite and quartz

Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO2(CO3)3 2 and Ca2UO2(CO3)3 (aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater. However, to our knowledge, there have been no direct studies of the effects of these species on U(VI) adsorption by mineral phases. The sorption ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 37 9  شماره 

صفحات  -

تاریخ انتشار 2003